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THE LOT SCHEDULING PROBLEM

IN THE HIERARCHY OF DECISION MODELS

Robert Sheldon, Ph.D., Capt, USAF

Cornell University 1986

The economic lot scheduling problem (ELSP) surfaces from competion among

products for a scarce resource, usually machine time. When scheduling

production of batches in this environment, two issues must be resolved: the

size of batches and the start times for production of each batch.

Standard approaches to the ELSP focus on scheduling multiple products on

a single machine. This thesis addresses three important issues that put the

scheduling problem in the context of its physical setting and range of

parameters: idle time, the zero switch rule, and stochasitc input to a

bottleneck machine.

In most scheduling heuristics, the reason for idle time is to balance

cyclic production patterns. Idle time is also optimal in solutions to

problems with high setup costs. We show that the condition for inducing idle

time, given zero setup costs, is when one product has dominant holding costs

and the remaining products have low machine utilization.

A common policy in scheduling is to start production only after the

inventory reaches zero. This policy is called the zero switch rule (ZSR) and

is regarded as a good scheduling policy. We show that the condition when ZSR

is not optimal is when the ZSR solution yields lumpy production patterns for a

product with dominant holding costs.

The standard approach to scheduling considers the input process to be

deterministic and ignores delivery of raw parts. This thesis examines

scheduling a bottleneck machine with stochastic inputs under a variety of

situations.
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THE LOT SCHEDULING PROBLEM

IN THE HIERARCHY OF DECISION MODELS

Robert Sheldon, Ph.D.

Cornell University 1986

The economic lot scheduling problem (ELSP) surfaces from

competition among products for a scarce resource, usually machine time.

When scheduling production of batches in this environment, two issues

must be resolved: the size of batches and the start times for

production of each batch.

Standard approaches to the ELSP look only at scheduling multiple

products on a single machine. To put the scheduling problem in proper

context, we examine how scheduling decisions on a machine affect and

are affected by other decisions and the physical structure of the

system. This thesis addresses three important issues that put the

scheduling problem in the context of its physical setting and range of

parameters: idle time, the zero switch rule, and stochastic input to a

bottleneck machine.

In most scheduling heuristics, the reason for idle time is to

balance the cyclic production patterns. Idle time is also optimal in

solutions to problems with high setup costs. We show that the condition

for inducing idle time, given zero setup costs, is when one product has
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dominant holding costs and the remaining products have low machine

utilization.

A common policy in scheduling is to start production only after

the inventory reaches zero. This policy is called the zero switch rule

(ZSR) and is regarded as a good scheduling policy. We show that the

condition when the ZSR is not optimal is when the ZSR solution yields

lumpy production patterns for a product with dominant holding costs.

The standard approach to scheduling considers the input process to

be deterministic and ignores delivery of raw parts. This thesis

examines scheduling a bottleneck machine with stochastic inputs under a

variety of situations. First, we isolate the issue of scheduling

deliveries to a machine. We look at using state information to schedule

the pre-bottleneck machines. Next, we consider an aggregate planning

model to evaluate both lot scheduling and delivery and develop an

algorithm for solving this problem. We show that the conditions when we

should consider the delivery issue in conjunction with the lot sizing

issue are when the holding cost of raw parts is high and when the

variance of delivery times is high. Then we examine a dynamic

programming formulation and consider a variation of the assembly model.
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CHAPTER 1

INTRODUCTION

The lot scheduling problem surfaces from competition among

products for a single scarce resource, usually machine time. Batch

production often is a natural consequence of manufacturing several

products on the same machine, unless setup times are negligible. When

scheduling production of batches in an environment having a single

constrained resource, two issues must be resolved: the size of the

production batches and the start times for production of each batch.

The solution to this problem is computationally difficult (Hsu, 20) and

therefore practical solutions must be obtained using heuristic

techniques. This scheduling problem occurs so frequently that it has

led to a standardized characterization as the Economic Lot Scheduling

Problem (ELSP).

Standard approaches to the ELSP look only at the issue of

scheduling multiple products on a single machine. However, in a more

realistic setting, we must ask what is the real problem we are trying

to solve? Couched in this setting is a hierarchy of decisions that must

be made at different levels of management at different points in time

and at different locations within the manufacturing system. Hence, to

put the scheduling problem in the proper context, we must examine how

the scheduling decisions on that machine affect and are affected by

other decisions and the physical structure of the system.

" " " ...-1-



The hierarchy of decisions for most manufacturing environments can

be broken into the following four levels:

Manufacturing Systems Planning (or Capacity Planning)

Production Planning

Flow Planning

and Scheduling.

The decisions made at these various levels range from design of

facilities down to real time detailed scheduling. Any modelling

approach to a manufacturing system should therefore address how the

model fits into the framework or structure of the overall decision

process as well as how the problems, issues, and decisions from that

model interact with the rest of the system.

The standard approach to lot scheduling considers the input

process to a machine to be deterministic. Therefore, the issue of

delivery of these raw parts is ignored when scheduling the machine. If

the delivery of the parts is indeed deterministic, then deliveries can

be scheduled to arrive just-in-time, and hence, the scheduling of a

machine can be looked at independently of its predecessors. However, if

the inputs to a machine are stochastic, that is, processing times on

the predecessor machines are variable or the overall delivery times are

inconsistent, then the schedule of the machine should be developed

considering the issue of delivery of raw parts to the machine.

A traditional ELSP assumption is that the demand process is

constant and continuous. An important issue in the physical context of

% %
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the machine environment which deviates from this assumption arises if

all different parts produced on a machine are subsequently assembled.

In the assembly model, the work-in-process (WIP) inventory is held

until all parts are available for assembly in addition to the normal

inventory accumulated due to batch production. In this case, we get a

different inventory pattern from the traditional ELSP sawtooth

inventory pattern. This requires a different approach for the assembly

model from the tradtional ELSP approach. Another variation occurs if

the demand process is dynamic and backlogging of demand and machine

capacity is permitted. These problems can be addressed in a general way

for arbitrary ranges of parameters, however for restricted ranges of

the parameters, a different method may work better.

Traditional approaches to the ELSP use the same solution technique

for all scheduling problems regardless of the range of the parameters

involved. If we place the problem in the context of the parameters

involved, an important concept to look at before addressing any given

scheduling problem is the notion of a dominant product. By this is

meant that one of the products has its parameters such that any

solution to the problem will always be dominated by that product. If

this is the case for a given problem, we can focus in on solution

approaches that take this into consideration. Using this notion, we can

get better solutions for the restricted class of problems without the

added effort of a generalized solution technique.

4
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The concept of a dominant product plays heavily in looking at

whether to induce idle time into the lot scheduling problem. In most

heuristics, the reason for idle time is to balance the cyclic

production pattern to accomodate non-rotation cycles. Idle time is also

optimal in solutions to problems with artificially high setup costs,

that is, the cost of setup is higher than the imputed value of lost

machine capacity due to the setup time. Other than these cases, if we

assume zero setup costs, then an optimal schedule would rarely have

idle time unless one product is dominant.

A common policy in scheduling is to start production of a

particular product only after the inventory of that product reaches

zero. This policy is called the zero switch rule (ZSR) (Maxwell, 24)

and has generally been regarded as a good scheduling policy. The ZSR

seems intuitively to be sound if we are trying to minimize inventory

costs. However, if we find an optimal solution restricted to the ZSR

policy, there are cases where we can improve the solution by

incorporating a non-zero switch, that is, for some product, start

production before its inventory reaches zero.

The remainder of this dissertation examines the aforementioned

issues of idle time, the ZSR, and stochastic input to a bottleneck

machine. In chapter 2, a review of relevent literature is provided.

This includes a discussion of the traditional ELSP and a review of

hierarchical models which have lot scheduling embedded in their

structure.

.



Chapter 3 looks at two important issues which have surfaced in the

traditional ELSP literature, idle time and the zero switch rule (ZSR).

In particular, we find that the conditions where inserting idle time

improves a solution to the ELSP, given zero setup costs, are very

restrictive. In addition, we verify that the ZSR is a good scheduling

policy for most problems and give explicit conditions to show instances

when we can do better with a non-zero switch.

In chapter 4, we examine scheduling a bottleneck machine with

stochastic inputs under a variety of situations. First, we isolate the

issue of scheduling deliveries to a bottleneck machine. We look at

using current state information to schedule the pre-bottleneck

machines. Next, we consider an aggregate planning model to evaluate

both lot scheduling and delivery to the bottleneck machine. Then we

examine a dynamic programming formulation under varying demand and

relax the constraint that all demand be satisfied during each period.

Finally, we consider a variation of the assembly model.

Chapter 5 develops an algorithm for solving the aggregate planning

model of chapter 4 and shows when the delivery issue is important as

well as the impact on the system of variability in the delivery

process.

Chapter 6 presents conclusions regarding scheduling idle time, the

ZSR, and scheduling a bottleneck machine with stochastic inputs.



CHAPTER 2

LITERATURE REVIEW

2.1 The Traditional Economic Lot Schedulin! Problem (ELSP)

2.1.1 Background

The traditional ELSP addresses scheduling production of several

products on a single machine. Elmaghraby (11) provides an excellent

review of the traditional ELSP literature through 1977. The following

are common notation and assumptions (with i being the index referring

to a particular product):

ri  demand rate in parts per unit time (constant, continuous)

Pi production rate in parts per unit time (constant)

p = r / pi relative utilization of the machine by product i

( ZPi 1 1 for feasibility)

si  setup time per production lot of product i

(assumed independent of sequence)

Ai  setup cost per production lot

(assumed independent of sequence)

hi  holding cost per part per unit time

T. length of repeatable production cycle for product i

H1  = 1/2 hiri(1 - pi) scaled holding cost when T. = 1

-6-
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The average cost for product i is

C. = A. / T. + hiri(1 - pi)Ti / 2

= A. / T. + Hi Ti -

The objective of the ELSP is to find Ti and start times for each

product which give a feasible schedule at minimum possible cost. A

feasible schedule is one which can be defined on a Gantt chart over any

given time horizon such that the demand for each part is satisfied

throughout the time horizon and the machine is never scheduled for more

than one activity at any point in the time horizon. A schedule is

infeasible if the machine is required to work on more than one product

at any time.

2.1.2 Independent Solution (IS) to the ELSP

Suppose each product can be produced on independent machines with

the constraint that total machine time used is equivalent to one

machine. Assume inventory of each product follows the pattern

Inventory
0 T

FIGURE 2-1

One Product Inventory Pattern



Average inventory cost = hiriTi(1-pi)/2 = HIT.

We can formulate this problem as

(2-1) minimize X HiT i + Ai/T i

(2-2) subject to E si/T i + Pi 1.

First assume that (2-2) is not binding and solve (2-1) to get
*

T = (Ai/H

If this solution is not binding in constraint (2-2), then the

theoretical optimum solution does not fully utilize machine capacity.

The machine capacity utilized in this solution is

U = Z si(Hi/A) 1/2 + E Pi"

Observe that the higher we set the values of Ai. the less machine

capacity we use in the theoretical optimum solution. The theoretical

lower bound in this case is

* (Ai~i1/2
C(Ti) 2 E

Zero setup costs.

In the case of zero setup costs, use Lagrangian relaxation on (2-1) and

(2-2) to get

*~ {E (Hisi)1/2}
Ti = (si/H.)

11



Which gives the lower bound on solutions of this form with zero setup

costs

{ (Hisi) 1/2}2

LLB =

4, 1 - X Pi }
2.1.3 Basic Period (BP) Approach

The BP approach restricts each Ti to be an integer multiple of

some basic period w, that is, Ti = K w, where K is an integer. Several

authors have developed iterative algorithms using this approach, for

example, Elmaghraby (11), Doll and Whybark (10), Fijita (12), and

Madigan (23). These iterative techniques involve computing a basic

period w and rounding cycle times T. to integer multiples of w, then1

checking for feasibility. If feasibility is not achieved, they iterate

to a new basic period or modify the solution. A BP solution is feasible

if a cyclic production schedule can be found such that the requirements

in any given period, including setup and production time, do not exceed

the length of the base period w. Hsu (i) showed that the check for

feasibility is NP-hard.

2.1.4 Power-of-Two Restriction

I Doll and Whybark (10), Delporte and Thomas (7), and Fujita (12)

recommended restricting cycle times to power-of-two times some base

period to simplify the search for a feasible schedule. Maxwell and

4, ~ n
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Singh (28) showed that restricting cycle times in the ELSP to power-of-

two times some base period would yield solutions within 6 of

unrestricted optimal cycle time solutions. Roundy (29) developed an

algorithm to perform the power-of-two roundoff of order intervals which

produced solutions within 6% of optimal solutions. Hence, the power-of-

two roundoff technique provides a simple way to get solutions which are

very close to optimality.

2.2 ELSP Imbedded in the Hierarchy of Models

The key feature of hierarchical models is that decisions are made

at one level under consideration of their impact at other levels. The

linking of levels of decision making then leads to better overall

solutions to the system being modeled. In many hierarchical models

involving mathematical programming, this linking takes the form of

Lagrangian multipliers or changes to the constraints (see, for example,

Graves, 15). Maxwell, Muckstadt, Thomas, and VanderEecken (27) propose

a general modeling framework for production control consisting of the

following three phases: creating a master production plan, planning for

uncertainty, and real-time resource allocation. Although they don't

present any detailed models, their approach shows how various models

and algorithms can effectively be placed in a hierarchical decision-

making structure. Hax and Meal (18) give reasons for using a

hierarchical approach and develop a model where decisions at the

aggregate level provide constraints for the lower levels. In this

der-
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model, they link capacity planning decisions with detailed scheduling

decisions. Grave's model (15) decomposes a large scale production

planning problem into two subproblems corresponding to the Hax-Meal

model and also provides feedback between detailed scheduling decisions

and capacity planning decisions. Dempster, et al., (8), point out that

the two fundamental reasons for using a hierarchical approach are to

reduce the complexity of the solution process and to cope with

uncertainty. Bitran, Haas and Hax (2) present a hierarchical production

planning model where aggregate planning is done first followed by

sequential levels of disaggregation in the production planning process.

Maxwell and Muckstadt (26) develop a model that coordinates production

decisions, including capacity planning and detailed scheduling, with

transportation decisions. Hence, we see that the hierarchical approach

provides a link among various levels of decisions in a manufacturing

system.

I I - ..



CHAPTER 3

FURTHER CONSIDERATIONS ON THE TRADITIONAL ECONOMIC LOT
SCHEDULING (ELSP) PROBLEM

3.1 When to Induce Idle Time in the ELSP with Zero Setup Costs

3.1.1 Introduction

In the ELSP with zero setup costs, intuition suggests that machine

capacity should be fully utilized to minimize inventory holding costs.

Dobson (9) presented a counterexample in which an optimal solution has

idle time. This section addresses the conditions under which it is

desirable to induce idle time into solutions with guaranteed

feasibility. Analysis shows that these conditions can generally be

characterized as one product having dominant holding costs and the

other products having low machine utilization. We first develop the two

product case and then examine two production patterns of the three

product case. These lead to a generalization for multi-products.

3.1.2 Rationale for usinE zero setup costs.

Since the fundamental idea of the ELSP is scheduling multiple

products through a single machine, it seems only natural that the

dominant feature of the problem is the constrained resource of machine

capacity (see, for example, Karmarkar, 21). Therefore, the most

important impact of setup arises through the value of lost machine

capacity. Hence, in this section setup costs are set to zero and the

constraint on machine capacity is handled explicitly.

-12-
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3.1.3 An Aside on the Baker and Bomber~er Problems.

The classical Baker and Bomberger problems (1,3) have high setup

costs, that is, the setup costs are higher than the value of machine

capacity lost in setup time. Hence the theoretical optimum solutions to

these problems have substantial idle time (see Appendix 2). Because of

this idle time, several authors (7,10,11,13,14,23) have made

significant improvements in solving these problems with heuristic

algorithms. Clearly, the more idle time you induce by charging high

setup costs, the easier it is to construct feasible schedules that

approach the theoretical lower bound.

3.1.4 Two product case.

Consider two products produced on the same machine where one

product (call it product 1) has a higher holding cost. Suppose for a

length of time t0 of the cycle T, we produce product I exactly to meet

demand. That is, idle time is induced after producing each unit of

product 1 so that no inventory cost is incurred on product I during the

interval (O,t0 ) (see figure 3-1). Conceptually, you could also view

this as slowing down the machine during t0 so that product I precisely

meets demand.

t4
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Product 1 1
Inventory 0 t0 t +t1 T

Product 2
Inventory 0 t0+t1+s 2  T

FIGURE 3-1

Two Product Inventory Pattern

The time parameters to , t1, t2, and T are related as follows:

t2 = p2 T 1production time for product 2

t1 = [pj/(1-pj)](p 2T+s I+s2) 1production time for inventory

cycle of product 1j

t1+s2+t2+s1 = (P2T+s1+s2 ) / (1-Pl) Dlength of inventory

cycle of product 1

t 0  T - (tI+s2+t2+s1)

= T(1-p1 -p2 )/(1-P 1 ) - (s1+s2 )/(1-pl)

Since t must be non-negative, the cycle length T is constrained by:

(I) T > (s1+s2)/(1-p 1-P2)

'S

4 - -.. p-p- .. . .



-15-

This leads to the overall cost expression we want to minimize:

Average inventory cost = HI(tI+s2+t2+s)2/T + H2T or

(2) C(T) = H p22T+2P2(s1+s2)+(s1+s2)2/T}/(l-p1 )2 + HT

To find the minimum of (2) with respect to T,

(3) dC/dT = HP2 2/(1-P l)
2 - Hl(sI+s2 ) /(1-P 1 )2T2  + H2

Observe that d2C/dT2 > 0, hence we can set equation (3) equal to 0 and

solve for T to find the minimum of C(T).

T = (81+s2) / {(1-p 1 )2H 2 /H 1 + p2 }1/2

Then constraint (1) is not binding and t0 > 0 in the optimal solution of

(2) onl: f

(s 1 +s 2) (-P 2H2 /H I+ > (S1+s2) / (1-P1 -P 2 )

This gives the condition for inducing idle time

H2/H1  < (i-Pl-2p2)/(1-p 1 )

For example, if p1 = 0.6 and p2 = 0.15, induce idle time only if

H2/H1 < 1/4. Observe that since the right hand side of this inequality

is less than or equal to 1, a necessary condition for inducing idle

time for product 1 is

H2 < HI -
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Observe also that since the left hand side of this inequality is always

greater than or equal to 0, another necessary condition is

< (1-p1 )/2

Hence, the general condition for inducing idle time in the two product

case is when the product with lower holding costs also has low machine

utilization.

Observe that the inventory costs using induced idle time may be

substantially lower than the theoretical lower bound calculated under

the assumption of full saw-tooth production inventory patterns.

Consider the two product case with H2 < H1' P2 
< (1-P1)/2, and

H2/H1 < (1-pl-2p2 )/(1-Pl). Let H2  = H/k , H, = kH , therefore,

H 2 /H = 1/k 2 where k > 1 ,s 1 = s 2 =s , PI = 0.5 , and p 2 
< 0.25. For

this range of parameters, the lower bound from the independent solution

is

{(Hs/k)1/2 + (kHs)1/2}

LLB* LLB -(1-.5-p )

* 2
2Hs(k+l)2

k(1-p2)

For the model with induced idle time,

T = 2s / (1-.5)2/k2 + P2}1/2

= 4ks / {1+4k2p 2211
/ 2

.. .- - . - - .- . ,- ,- 4.,, - . , - .- . .-- .-.- ,. .-" .- .



-17-

and

C(T*) = 8Hs(1+4k 2P22)1/2 + 2kp 2

Then we can compare C(T*) to LLB.

C(T ) -4k(I-P 2 ) (14 2 2 1/2+ k
LLB (k+1)2  f+ P2  2kp4

If we take the case when P2 is small, we get

Lim [C(T*)/LLB] = 4k / (k+l) 2

p2 - 0

Hence in this case, when k > 1 (that is, H2 < H1 ), then the idle time

solution is less than the independent solution lower bound. If we take

the case when k is large (that is, H2 << HI ) we get

Lim [C(T )/LLB] = 16p2 (1-p2)

k - w

Hence in this case, when p2 < .07, the idle time solution is less than

the independent solution lower bound. If we take the example where
*

P2 = .05 and k = 5, we get C(T )/LLB = .85, that is, the average cost

per year for the idle time solution is less than the corresponding cost

of the independent solution lower bound.
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In summary, we see that in the two product case, for a restricted

range of the parameters, we can get better solutions by inserting idle

time into the schedule. The restriction on the range of the parameters

can be expressed as one dominant product having higher holding costs

and the other product having low machine utilization.

3.1.5 Three product case.

We have seen for the two product case conditions under which it is

desirable to induce idle time into the schedule. Now consider three

products produced on the same machine where one product (product 1) has

higher holding costs. There are an infinite number of possible

production patterns we could consider. However, two examples of

production configurations will illustrate that the conditions for

inducing idle time in the three product case are similar to the two

product case.

3.1.5.1 Production Configuration 1.

For the first example of the three product case, we consider a

production pattern with two setups per cycle for the dominant product.

That is, we build up inventory of product 1 prior to the production of

each of the other products (see Figure 3-2).

D . . . .. .. . . . . . . o °* '



Product 1

Inventory 0 t 0  T

t 12  t 13

Product2

Inventory 0 
T2

Product3

Inventory 0T
t 3

FIGURE 3-2

Three Product Inventory Pattern
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The time parameters to, t 1 2 , t 1 3 , t 2 , t 3 , and T are related as follows:

t 2 =p2T

t3 = p3T

t12 = pl(P2T+sl+s
2) / (1-P1 )

tl12+s2+t2+sI = (p2T+s1+s2) / (1-p1 )

t13 = pl(P 3T+s1+s3) / (1-P1 )

t13+s3+t3+s1 = (P3T+sl+s3) / (1-p1 )

tO = T(1-Pl-p2-p3)/(1-P1 ) - (2sI+s 2+s3)/(1-P1 )

Since t0 must be non-negative, the cycle length T is constrained by

(4) T > (2s1+s2+s3) / (1-P1-p2-p 3)

Average inventory cost.

+ HT HsT

2 3

To find the minimum of C with respect to T,

(5) dC/dT = H1{P22+p3 2-(s 1+s2)2/T2-(s 1+s3)2/T2} + H2  + H3

V. '; ," ;,'," '/ ". . '"J' -' "- ' " " ' . .," """ ,/ "" ' '.. """ " ' " ' " " " - - ', '"''"-.. -"'' " -
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Observe that d2 C/dT2 > 0. Hence we can set equation (5) equal to 0 and
*

solve for T to find the minimum of C(T).

* {(sl+s2)2+(sl+s3)2}1/2

{(H+H 3)(1P 1 )2/H 1 + P2+p }1/2

Condition for inducing idle time.

Then constraint (4) is not binding and to > 0 in the optimal

solution only if

(6) {(s 1 +s 2 )2 +(s I +s3) 2}1/2 2s 1+s2+s3

{(H2+H3)(1-P 1 ) 
2/H1 +P22+P32}1/2 1 - Pl- P2- P3

Observe that (s1+82) + (s1+s 3) > {(s1+s2)2 + (sI+s3)2}1/2

Furthermore, note that

{(H2+H3)(1-p 1 )2/H1 + p22+P3 }1/2 < 1-P1-p2-p3

only if (H2+H3)/H1 < 1. Hence a necessary condition for inducine idle

time is

(7) H2+H3 < H.

Since (H2+H3)/H1 > 0, another necessary condition is

{P22 +P32}1/2 < {(s I+s2) 2 + (s I+s 3) 2}1/2p

1-Pl-p2 -p 3  (sl+s2)+(sl+s3)

.]
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If we take the simple case where P2 = P3 and s2 = s3, this reduces to

P2+P3 < (1-p 1 )/2

Note that this is similar to the two product case. The general

condition for inducing idle time is when the products with lower

holding costs also have low machine utilization.

3.1.5.2 Dobson's Counterexample

Dobson presented the following counterexample to show that under

certain conditons, it was optimal to have a schedule with idle time

(4, page 18):

hI = 1, h2 = h3 = 0, r1 = r2 = r3 = 1, P1 = 4, P2 = P3 
= M, sI = s3 1,

s2 = M, Pl 
= 1/4, P2 = P3 = 1/M, H, = 3/8, and H2 = H3 = O.

These parameters clearly satisfy the necessary condition (7),

that is, 0 + 0 < 1. Idle time should be induced if constraint (6) is

satisfied. This holds for values of M as small as 5. Hence, we don't

need to use extreme pathological cases to show the advantages of

inserting idle time.

3.1.5.3 Production Confieuration 2

For the next example of the three product case, we consider a

production pattern where the dominant product is only set up once per

cycle. That is, we build up enough inventory in that one production run

to carry through the production time of the remaining products (see

figure 3-3).

d
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Product 1
Inventory 0 t0  T

ti

q

Product 2
Inventory 0 T

t2

Product 3
Inventory 0 T

t 3

FIGURE 3-3

Three Product Inventory Pattern
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The time parameters to, t1, t2, t3, and T are related as follows:

2  p2T

t3 = P3T

t = pl[(P2+p3)T+(sl+s 2+s3)] / (1-p1 )

t 1+s2+t2+s3+t3+s1 = [(P2+P3)T+(sI+s 2+s3 )] / (1-pl)

t = T(1-p -P2-p3)/(l-P1 ) - (sl+s 2+s3)/(1-P)

Since t0 must be non-negative, the cycle length T is constrained by

(8) T > (s 1 +S2 +s 3 ) / (1-Pl-P 2 -P 3 ) •

Average inventory cost.

C(T) = H fT(p2+p )2+2(p2+P3)+(sl+s2+s3)2/Tl / (I-Pl) 2 + H 2T + H3 T

To find the minimum of C with respect to T,

dC/dT = H (p2+p3)2-(s 1+s2+s3)2/T2} / (1-p)2 + 2 + H3.

Observe that d2 C/d T 2 0, hence we can solve for T* to find the

minimum of C(T).

S(s 1+s 2+s3)
T+} {(H 2+H)(1-pi) 2/H 1 + (p2 + ) 211/2 '
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Condition for inducing idle time.

Constraint (8) is not binding and t > 0 in the optimal solution

only if

(H 2+H3)/H1  < 1 - 2(p 2+p3)/(1-Pl)

Observe that since the right hand side of this constraint is less than

or equal to 1, a necessary condition for inducing idle time is

H +H3  < H.

Since (H2+H3)/H1 k 0, another necessary condition is

.P+P3 < (1-P1)/2

Note that this is the same as in the two product case. Hence, we see

that for general production configurations of the three product case,

the two necessary conditions for inserting idle time are that one

product has dominant holding costs and that the remaining products have

low machine utilization.

3.1.6 General criteria for inducing idle time.

Using the results derived in the two product case and the two

production configurations considered in the three product case, we can

formulate the following approach to determine if idle time should be

inserted into the schedule for a particular problem:

1. One product (product 1) has dominant holding costs.

HI > H H i .

*. i>l

"p

.4

.4. " ' . + +,t€ 'I ',t, "
" -

" ::"" " ' " " "' ' " ' '' . -+i"" ' '""" • " J :""-" "'""
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2. Remaining products have low machine utilization.

Pi < (1-P 1 )/2 "

i > 1

If a problem meets these necessary conditions, use the following

procedure to determine if idle time should be induced:

3. Formulate a 'good' production pattern (for example, see reference 6 p

for a heuristic technique to develop production sequences).

4. Define the relationships between time parameters t. and T (similar to1

those defined in the two product and three product cases).

5. Formulate the average inventory cost as a function of T subject to

the constraint that t is non-negative.
0

6. Solve for T to minimize C(T).

7. If the parameters of the problem make t0 > 0, then idle time should

be induced.

3.2 When the Zero Switch Rule (ZSR) is Not Optimal

3.2.1 Introduction.

In the Economic Lot Scheduling Problem (ELSP), the ZSR has

generally been regarded as a good policy for keeping average inventory

levels low (Maxwell, 24). This is supported by the fact that ZSR is

optimal with respect to inventory of a single product as will be

verified in the following section. Pathological cases have been

developed to prove the non-optimality of the ZSR (Delporte, 6). This

section addresses specific conditions under which the ZSR is non-

optimal. These conditions generally occur when the optimal solution

U-]

"I
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with respect to the ZSR gives uneven production patterns to high cost

products.

3.2.2 General Approach.

The general approach we use to improve the ZSR solution is to look

at marginal adjustments to the current production pattern where we can

decrease the overall inventory costs.

3.2.2.1 Cost Savings from BalancinE Production.

Suppose we have a solution to the ELSP that is optimal with

respect to the ZSR policy. Consider two adjacent production runs of one

of the higher cost products such that adjacent runs are not balanced.

Inventory J " I
Level t1  ti  T

FIGURE 3-4

One Product Inventory Pattern

If we slightly adjust these production cycles, retaining the same

overall length T for both cycles, we can show the marginal savings in

average inventory costs. Consider the inventory of a given product

under the ZSR for two non-identical production runs.

- .- 1 . .. . . . . . . . . . . . . . . . . . .
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Inventory

Level t T

FIGURE 3-5

One Product Inventory Pattern

Average inventory = r(I-p)[t1 2(T-t1 ) ] / 2T

= r(l-p)[2t2 /T + T - 2t1] / 2

The minimum average inventory with respect to t1 is achieved when t1 =

T/2, that is, the production lots are balanced. Then the cost function

can be written as

C = hr(l-p)[2t1 2/T + T - 2t] /2

or C(t1 ) = H[2t1
2/T + T - 2t 1 ]

The rate of change of C with respect to tI is

dC/dt1  = 4H[t -T/2] / T.

Observe that if t1 < T/2 , increasing t1 decreases the average

inventory and decreasing t1 increases the average inventory.

Conversely, if t1 > T/2 , decreasing t1 decreases the average inventory

and increasing t increases the average inventory. Hence, balancing the

production cycles decreases the average inventory.

F.
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3.2.-2.2 Cost of Using a Non-zero Switch.

Consider two adjacent production runs of one of the products with

lower holding costs. Suppose we again alter the cycle to accommodate a

non-zero switch while retaining the same overall length T for both

cycles. --

Inventory
Level 0 tI  t, t 1+t 2  T

Non-zero switch ,

FIGURE 3-6

One Product Inventory Pattern

If we fix T, increasing tI decreases the length of the second

production run. We can show the marginal increase in average inventory

costs. Suppose inventory for a given product has the following pattern:

Inventory ,
Level 0 T

tI  t2  t3  t

FIGURE 3-7

One Product Inventory Pattern

57-
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The time parameters tl,t 2 ,t3 ,t4, and T are related as follows:

tl+t 3 =pT or t3 =pT - t, and

. 2+t4 = (1-p)T or t4 = (I-p)T - t2

Average inventory = { (p-r)t1
2/2 + [(p-r)t 1+(p-r)t 1-rt2]t2/2

+ [(p-r)t -rt 2+rt 43t3/2 + rt4 2 }/T

= ptIt2/T - rt2  + r(l-p)T/2

Observe that t1  pT. Hence the coefficient of t2 is always less than

or equal to 0. Because the inventory at the non-zero switch point must

be non-negative, we get the following constraint:

(p-r)t 1 - rt2  0.

This constrains t2 to

0 t2  tI(p-r)/r

Hence, average inventory of this product would be minimized with

respect to t2 by t2 = tI(p-r)/r. That is, average inventory of that

particular product is minimized by following the zero switch rule. Note

also that average inventory of this product is then minimized with

respect to t2 (under the ZSR) when

t = pT/2.

N.
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That is, average inventory is minimized when the production lots are

exactly balanced. Then the cost function can be written as

C = hipt1t2/T - rt2 + rT(1-p)/2.

The rate of change of C with respect to t1 is

dC/dt1 = hpt2/T

3.2.2.3 Improving the ZSR Solution.

We can improve the ZSR solution in the following way. Take two

products that have two adjacent production runs in the ZSR solution.

Adjust their production times retaining ZSR for the high cost product

(product i) and incorporating a non-zero switch for the lower cost

product (product j), as shown in Figures 3-4 and 3-6, such that we

don't affect the rest of the production cycle. We then make the

production pattern of the higher cost product more balanced at the

expense of using a non-zero switch policy for the lower cost product.

Then we should use the non-zero switch option if the marginal cost

savings from making production of product i more balanced exceeds the

marginal cost of using a non-zero switch on product j That is

2Hi(T i-2t il)/T i > hpjtj /Tj

hi  2ri(1-p i) Ti
or (9) h.h pJ (Ti/2-t i) T.

'. '. -; - . €'- , . - ,'. -?.- :.' '. ..-.€" .. '. -.. . .. -... " -g..' ? ? ".. ..? ,- .-'i- -,.-,-
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Thus we see that we can improve a ZSR solution when that solution gives

a lumpy production pattern to a product with dominant holding costs.

By using a non-zero switch on some cheaper product, we can balance

production of the dominant product.

3.2.2.4 Delporte's Counterexample.

Delporte presented a counterexample to the optimality of the ZSR

(6, App IV, A Counterexample to the Optimality of the ZSR). The data

for this problem is as follows: p2 = 1, r 2 = .2, P2 = .2, P3 = 1,

r3 =.4, P3 = .4, h3 = .1, rI = .4, P1 = .4, and h, = 100. The solution

to this problem with respect to the ZSR is given by Figure 3-8.

Product 2
Inventory

*0 4 20

Product 3
Inventory

0 4 6.462 10.155 15.693 20

47



-33-

Product I
Inventory

0 4 6.462 10.155 15.693 20

FIGURE 3-8

Three Product Inventory Pattern

Substituting this data into equation (9), we get 480 > 1.3. In this

example, we see that the ZSR solution is not optimal even if we take

less extreme values of relative holding costs, that is, as long as

h1/h3 > 370 , the ZSR solution is not optimal.

3.2.3 Conditions When the ZSR is not Optimal

Under what conditions is it likely that the ZSR is not optimal? We can

best answer that by asking when the inequality (9) is likely to hold.

Consider two products whose independent solutions for natural cycle

length are approximately equal, that is, using the Lagrangian

relaxation method, we obtain

T { [H isi] 1/2} Lsi/Hi]" 2 / {1-Z piJ

Hence, these two products should be produced at roughly the same

relative frequency. Then Ti = Tj or si/H i = sj/H . If we let

Ti = T. and substitute into equation (9), we get

(s i/s i) pi(l-pi) > t j2/(T/2 - tid )
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Then under this situation, the ZSR solution is not optimal if

(a) Two products have roughly the same natural cycle length

while one of the products has both dominant holding costs

and setup time.

and

(b) The ZSR solution gives uneven production patterns to the

higher cost product.

IF

In summary, conditions (a) and (b) above describe when the ZSR is

likely to not be optimal and we may be able to improve the solution by

incorporating a non-zero switch. When these conditions do not hold, we

can safely conclude that the ZSR is a good policy. For example, if we

use a power-of-two policy (Roundy, 29), all production lots for a given

product are equal so we could not improve the solution by using a non-

zero switch.

'C



CHAPTER 4

STOCHASTIC INPUT TO A BOTTLENECK MACHINE

4.1 Introduction

Consider a bottleneck machine which processes several products

(see Figure 4-1). The traditional ELSP approach is to assign costs for

setup of each product and costs for holding inventory after processing

until the parts are demanded or consumed. It ignores the issue of

delivery of raw parts to the bottleneck machine and resulting holding

costs for those raw parts. If delivery of the raw parts is

deterministic, the delivery of each product could be scheduled to

coincide exactly with its start time. In this deterministic case, it is

reasonable to ignore the delivery issue when scheduling the bottleneck

machine. However, if the deliveries are not deterministic, that is if

there is variability in shipping time or processing time on the

predecessor machines, then ignoring this issue when scheduling the

bottleneck machine can seriously affect total operating costs. For

example, if delivery of the raw parts is requested too early, then

excessive work-in-process (WIP) inventory will accumulate before the

bottleneck machine. On the other hand, if delivery of the raw parts is

requested too late, then productive capacity of the entire system is

diminished because the bottleneck machine is delayed.

This chapter addresses the combined issues of scheduling delivery

of raw parts to a bottleneck machine and scheduling lot sizes on that

-35-
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machine. Section 4.2 focuses on the delivery issue assuming the

production schedule has already been defined for the bottleneck

machine. Section 4.3 analyzes how state information can be used to

schedule the machines using real time data. Section 4.4 develops an

aggregate model for combining the issues of lot sizing and delivery

scheduling. Section 4.5 relaxes the constraint that all demand be

satisfied in each period and looks at a dynamic programming approach.

Section 4.6 looks at the special case of an assembly model with a

different inventory pattern.

Predecessor Machines

A B C D

Bottleneck

Machine

FIGURE 4- 1

Machine Network

%
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4.2 Scheduling Deliveries to a Bottleneck Machine

4.2.1 Simple Newsboy Model

Consider one particular production lot on the bottleneck machine

and focus only on the delivery issue. Suppose the machine will be

available and production of this lot is scheduled to start at a

specific time (reference this as time zero). Define the following

additional parameters:

d. requested delivery time of product i raw parts

D. random variable representing actual delivery time

(note: D. > 0 means the lot arrived late, D. < 0

means the lot arrived early) ,

f.(.) probability density of delivery time of product i
centered about mean zero (assumed independent of lot

size -- this assumption may not be valid in

certain cases, Karmarkar, 22)

F.(.) cumulative distribution of fi(.)

h. holding cost at the bottleneck machine of raw part i

per unit time ,

riT i  lot size for product i , and

value of lost machine capacity per unit time

Given that d. is the requested delivery time, there are two possible

outcomes and costs incurred.



-38-

Case 1. Early delivery (Di < 0)

I I '

Di  0 t

The cost incurred is hiriTi(-Di) which is the inventory holding cost

of raw parts.

Case 2. Late delivery (Di > 0)

1
0 D. t

The cost incurred is X Di which is the value of lost machine capacity.
1

The expected cost, given that di is the requested delivery time, can be

formulated as

0 '
C(d -= h irT -x fi(x - di) dx + X J x fi(x - di) dx

Using a change of variable, y = x - di , we simplify this expression

to
-d.

C(di) = iriTi f (y + di) fi(y ) dy + fcD (y + di) fi(y) dy

- D . -d.

di - (x + hiriTi) _=d y fi(y) dy - (X + r Ti) di  fi(y) dy.

To find the optimal requested delivery time, determine

d C j-d.

dC. = x - (X + iriTi) [-1 f(y) dy
dd11

1"

"' "". . .... .~ : "' " " '' " " ' '" " " "' ' ' . , ,'..,..>, '''''" :,' ...,.."..." ,I
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Since d" (2 0 + h.r.T fi(-d) > 0 , C is convex in d..
d d 1* 1

Then the optimal requested delivery time is to choose d. such that

111F i(-d i  ) =---
X + r Ti

This is the familiar solution to the newsboy problem. In this case, we

are balancing the expected value of lost machine capacity with the

expected value of inventory holding costs.

4.2.2 Stochastic Delivery with Two Random Variables

Consider one production lot (product i) scheduled to start at a

specific time, reference this as time zero, and another production lot

(product j) scheduled to start upon completion of product i (see

figure 4-2).

Scheduled-- - - i > <-- >

0 P. t
1

Actual i < P >
--i i I I " >

0 D D.+ P. D. t
0 11 1

Figure 4-2

Gantt Chart

If D. < 0, the production of lot i will start on time, that is, time
1

zero, and if D. > 0, it will start late. Conditioning on Di, there are

again two possible outcomes and costs incurred due to product j.

S.7 5
JS'' .2 5e',".' ,.. ' . .*• ,.'...,' .. '.A*,-, .. ".. .'.... . .- ,"."-. ." , .".. .'.' .. ,".",.-S ..*'4 .,.' '..
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Case 1. Early Delivery, that is, D. < P. + maxI0, D.it

The cost incurred is - h ir.iT.i(D. P. maxj0, D i)

Case 2. Late Delivery, that is, D.i > P.i + maxJ0, D i

The cost incurred is X (D.i - P. - maxI0, D i )

The expected cost, given that d.j is the requested delivery time and f.

is the distribution of the start time of production lot i, can be

calculated as

C.C d~ = C f i Y)j j d 4 hr rI + (x -Pi- y) f.i(x -d) dx

0

+ X Fw (x - Pi- y) f.(x - d.) dx ~

Using a change of variable, z = x d d., this simplifies to

C. (d. C f (y) dy [~r. T. F'+ y d (z + d- P.- y) f.(z) dz

+ X jP y ( dz + dj - P -y) fjCz) dz]

The optimal requested delivery time d.i is found using the following

equation:

* d C.

d. -x CX + r T) f (y ) 31 y -d.) dy =0

d3.J*
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Since

d 2C.
= (X + rT.) i(y) fj(Pi + y - d.) dy 0

d d.2  0

C. is convex in d.. Then the optimal requested delivery time is to

choose d. such that

(4-1) f fi(y) F.(P i + y - d.) dy =
0O + h.r.T.

If f. represents the arbitrary start time of production lot i,

incorporating all random events up to that point, then the same form of

solution applies.

4.2.3 Three Echelon Machine Network

Suppose the inputs to the predecessors of the bottleneck are

stochastic (see figure 4 - 3). The issue is when to schedule deliveries

to machine i. If the delivery arrives early, WIP is added to the system

at machine i. If the delivery arrives late, the subsequent delivery

from i to the bottleneck might be late thereby causing a reduction in

capacity of the overall system. Since we know the rate of change of

cost at level i with respect to di, this is the marginal rate at which

the overall system costs would be affected by a delay in delivery to i.
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ik i

N

Bottleneck
Machine

FIGURE 4 - 3

Machine Network

The overall expected system cost with respect to delivery from machine

ij can be expressed as

0_.1 0 f x f..(x - d..) dx
Cij(d1ij -hijrijTij 1-

+ [x - (X + irTi)Fi (-di O x fij(x d ij dx
0

= [x- (X + irTi) Fi(-d.) ] dij

-d.13 3 11 1 1
iJ fij.(y) d

- [X + hijr ijT ij - (x + iiriTi) Fi(-di ] y dy

[-d i j  ()d

- [X + KijrijTij + (X + hiriTi) F i((-d ) ] fij(y)dy

This yields the optimal delivery time d that satisfies

. .(-d. - (X + FiriTi) Fi(-di)
Fij(-ij)=

x - (X + r iT.) Fi(-d.) + rij T..

1 1 31
1
ii 1 i • • I • . . • . . . . .. . . " . .
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In summary, delivery times should be chosen to balance the expected

costs of holding inventory with the expected cost of lost machine

capacity. Having completed this analysis for computing deliveries for

general points in time, we now develop a method that looks at the

current state of the machine network for real time scheduling of

deliveries.

4.3 UsinE State Information to Schedule Pre-Bottleneck Machines

4.3.1 General Formulation

Using the concepts developed in Section 4.2, we can then use

current information on the state of the system to schedule production

in the predecessors to the bottleneck machine. Suppose a given machine

i has finished production of a lot and sent it to the bottleneck

machine. When should we initiate a new production lot of i knowing

current state information, i.e. the status of the bottleneck machine

and other predecessors to the bottleneck? In general, the expected

delivery time of the raw parts should match the expected availability

of the bottleneck machine plus an allowance for some safety time. The

amount of safety time depends on the relative value of machine capacity

to the cost of holding parts.

Let gi(x I state) be the conditional distribution of the time the

bottleneck machine will be available again for product i, given the

current state of the system. Then the contribution of the delivery of

product i to the system cost can be formulated as

.I
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Ci(d) gi(x I state) [-Fi r iTi J (y-x) fi(y-d i) dy

0

+ XJ (y-x) f (y-d) dy ] dx
x

The optimal solution is to choose d. such that1

gi(x I state) Fi(x-di) dx =
0 X + h .r.iT.i

To shorten future notation, let R. =

4.3.2 Two Product Case

A two product case illustrates how current state information can

be used to schedule pre-bottleneck machines. Consider two machines A

and B which directly precede the bottleneck (see figure 4 - 4).

A B

Bottleneckl

Machine

FIGURE 4 - 4

Machine Network

Suppose machine A has finished and sent a production lot to the

bottleneck (see figure 4 - 5). When do we initiate production of A

again?

.% %
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Machine A >
Machine B

Bottleneck <--- PA--><- PB- >

decision point available for A

FIGURE 4 - 5

Gantt Chart

We want to know how much work remains on the bottleneck, including the

distribution of possible delays as a function of state variables,

before the bottleneck will be available for product A again.

The possible states for A and B can be defined as follows:

Production lot A.

State 1. Finished on the bottleneck.
State 2. Started but not finished on the bottleneck.
State 3. Not started on the bottleneck.

Production lot B.

State 1. Started on the bottleneck.
State 2. Awaiting processing on the bottleneck.
State 3. Started but not finished on machine B.
State 4. Not started on machine B.

The state of the system can be expressed as (a,b) where a represents

the status of production lot A, and b represents the status of

production lot B. Observe that we don't need to consider state (1,2)

because B has nothing to wait for in this case and states (2,1) and

(3,1) because of incompatibility. For each of the possible states, we

can then formulate an expression corresponding to the optimal requested

delivery time developed in Section 4.4.1. For each of these states, we
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will illustrate the results with exponential and uniform distributions

of processing times on machines A and B with constant deterministic

processing times on the bottleneck machine.

State (1.1). A has finished on the bottleneck, and B has started on

the bottleneck.

Let tb be the time B has already been processed on the bottleneck.

Bottleneck < PB >
tb  available for A

The optimal solution is to choose da such that F a(P - t b - d) = Ra

Case 1. Exponential processing times for machines A and B.

Assume A and B have exponential processing times on the pre-bottleneck

machines, with deterministic processing times on the bottleneck

machine, that is, for machines A and B,

fi(x) = X. e-Xix  • for x 0 ,

and Fi(x) = 1 - e-i x  for x 0 i = A and B.

The optimal solution in this case is to choose d such that
a

-xa(PB - d )
l-e aBt d) = R

or d =P -t +Llg(a B b+~ lo a1Ra

da ,*5 .' .. -- * 1..K.~.or:.P'- b Xvlo .'(.. -.. ***a)- - -- **
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Since 0 r Ra  I , log(I - Ra) 0 . Observe that this corresponds to

matching the delivery time with the availability of the bottleneck

machine (in this case, PB - tb) plus allowing for allowing for safety

time (in this case, I/x a log (I - R a)).

Case 2. Uniform processine times for machines A and B.

For machines A and B,

fi(x) = 1 / 2ui , for 0 x 2ui

and Fi(x) = x / 2ui , for 0 x 2u .

The optimal solution in this case is to choose da such that

(PB- tb- d)/ 2ua = Ra
*

or da = B - b - 2uR

Observe that this corresponds to matching the delivery time with the

availability of the bottleneck machine (in this case, PB- tb) plus

allowing for safety time (in this case, 2u aRa).

aaa

State (1.3). A has finished on the bottleneck, and B has started on

machine B.

Let tB be the time B has already been processed on machine B and

fB(x I tB) be the distribution of time remaining on machine B.

Machine B >
tB

Bottleneck PB a
available for A
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The optimal solution is to choose d a such that

fjB0  I t B)F + dxB- d R R

Case 1. Exponential Processing times for machines A and B.

The optimal solution is to choose da such that

-~X~x -a( PB-tb-da)]d

j >B - e[1-e ] d = R
0  a

1 log[ ] +-T log(1-P)

or d. PB + -a a a

Case 2. Uniform processing times for machines A and B.

Assume that the distribution fB(x I tB) is uniform (0, 2ub-2tB)

The optimal solution is to choose d a such that

2ub-2tB 1 x + PB- da] R

o 2ub-2t B 2u a a

or da = PB + ub- tB - 2uRa

State (1.4). A has finished on the bottleneck. and B has not started

on machine B.

Let fBl( x) be the distribution of start time on machine B.

Machine B <- x -><- y ->

Bottleneck < PB
B available for A

The optimal solution is to choose da such that

O fB1(X)J fB(Y) F a( x + y + PB- da) dy dx = a

0 a
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Case 1. Exponential processing times for machines A and B.

The optimal solution is to choose da such that

J ' B l -"B x " ) e -X e -x (x + Y + P B - tb - d ) I y d R a
JxB 1 e'J>.) e [ - e ] dy dx = Ra

a = [+ ]b 1 log[
or d P + - log[--- +-- [ - L log (1-a-).

B xa) a),a

Case 2. Uniform Processine times for machines A and B.

Assume that the distribution fB(x I tB) is uniform (0, 2ub-2tB).

The optimal solution is to choose d such that
a

12ubI I 2ub I x + y + PB- da] dy dx R

JO ub J 0 2u a a

or da  = PB + ub + ubl - 2uaRa

State (2.2). A has started on the bottleneck, and B is awaiting

Processing on the bottleneck.

Bottleneck < ... -Px>- P B >
t a available for A

a

The optimal solution is to choose d such thata

Fa(PA- ta+ PB-d) = Ra

Case 1. Exponential Processing times on machines A and B.

The optimal solution is to choose d a such that

-x a(P A- ta+ P B- d a)
1-e a R

a
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* 1 )
or d = P -t +P + alog(I-Ra A a B % a a~-H)a

Case 2. Uniform processing times on machines A and B.

The optimal solution is to choose d such that
a

(PA- ta+ PB- d)/U = R

*

or da PA - ta + PB- 2uaR

State (2.3). A has started on the bottleneck. and B has started on

machine B.

Machine B < >
tb

Bottleneck <---- PA-  >< PB
ta available for A

Then the distribution of the start time of B on the bottleneck is

defined by the maximum of the completion time of B on machine B and the

completion time of A on the bottleneck.

Let fsb(X I ta tb) be the distribution of the start time of B on the

bottleneck and fsb(x I ta tb) = f Fb(x I tb) for x = PA- ta

fb(x tb) for x > P ta

The optimal solution is to choose d a such that

Fb(PA- ta J tb) Fa(PA- ta+ PB- da)

+ jP_-t f b ( x  t t b  Fa (X + P B- d a) dx R Ra

bta
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Case 1. Exponential processing times on machines A and B.

In the exponential case, we get

fsb(x I ta, tb) 1 - e , for x = PA- ta

'b e -)bX ,for x > PA- t

The optimal solution is to choose da such that

[1- e b(PA- ta) -eXa(PA- ta+ PB - da)

+ t > B e-xa(X + PB - da) = Ra
P A- t a

or

d X a e-b(PA-ta) +d 1Pt+ -- log[1--. e lo(la)

a A a B X a Xa+- a a

Case 2. Uniform processinE times on machines A and B.

In the uniform case, we get

f A a forx=P-t
fsb(x I ta'tb) 2ub- t b  A a

2u21o PA < x :5 2U b-2t bb b. b 2u-b , for PA- ta < 2 bt

The optimal solution is to choose d a such that

PA- ta PA-ta + PB d + 2 ub- 2tb x + PBda = R

2u -2tb[ 2u aru=UBa jP A-t a b-b a

* 
(PA-ta)2

or da = B + ub - tb+ 4(u b-t) 2uaRa

bb
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State (2.4). A has started on the bottleneck, and B has not started

on machine B.

Machine B < x -X><- y ->

Bottleneck <-T- A > B a >t aavailable for Aa

f = the distribution of maxjx + y, PA-t
sbAa

Case 1. Exponential processinE times on machines A and B.

In the exponential case, we get

fsb(k It) = - -  , for k = P A- ta

(I-+b>,bl) e ,for k > P - t
1A a

The optimal solution is to choose d a such that

e -(b+'bl)(PA- ta) -X a(P A- t a + P B- d a)

0 -(bXb1 ,+x)x -X(x + P - d)
PA- t (Xb+

1
b l ) e [1-e a B a ]dx=Ra

or da P P - t +L log (I-Ra)

S [a -('[b + ebl)(PA- ta)
a a

.9 , . .. :, . - . _ ,..,,._.- .. ,. _'_. . , .- -, , . . ....... . , .. . . , .... . .... ,.,,.
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Case 2. Uniform processing times on machines A and B.

In the uniform case, we get

S2Ub+ubl A a

+ for PA- t < k 2ub+2u
2Ub+2ubl A a bbl

The optimal solution is to choose d such thata

" P+P- ub+ 2ub 1 x + PB- da]d
PAt a B+]t AUb+ a abbi 1 Bua

2ub+2u 2u + - 2u+ 2 u Zu a a
bi aA a

* (PA-t a) 2

or da = B +  4ub+4Ubi + ub + u - 2u aRa

State (3.2). A has not started on the bottleneck, and B is awaitinE

processine on the bottleneck.

Bottleneck <_ x ->< PA - >< PB >"
available for A

Let f al(X) be the distribution of the start time of the old lot A on

bottleneck. The optimal solution is to choose da such that

bfal (x)F a(x + PA + PBd a d

Case 1. Exponential processine times on machines A and B.

The optimal solution is to choose d such that

Sx -%al [ -xa (x + PA+ PB- da)
4 ale  [1 - ea] dx = Ra

0 a ~*
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or da P P + ( + I log (a al
a A B >1 ao( ~~+lg Xa a al

Case 2. Uniform Processing times on machines A and B.

The optimal solution is to choose d such that
a

2u al I (x + PA+ PB- da)

j0 2u 2u a0 al

or d = + P + ual- 2uaa

State (3.3). A has not started on the bottleneck, and B has started on

machine B.

Machine B < - y - >

Bottleneck <- x - >< - PA- >< PB >

available for A

fsb(k) = the distribution of maxjx + PA" "

Case 1. Exponential processing times on machines A and B.

In the exponential case, we get for k Z P A

-Xk k -X a (x -PA
fsb(k) = Xbe k  A Xe al dx

X a e - a (k - P ) Ik  be bx

+ X e e dx

-Xbk -Xal (k- P A -bk - Xai(k- PA)

)-e  + ae - (X l+ b ) .

'-b al a
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The optimal solution is to choose da such that

-)6 (k +PB-da
JpAf sb ()[1i-e ak a

or

1a P P l al a ala 6 a] + - lg(1pR

da PA +PB- 7- 10oE[) + X AlVxA a + (X+ )

Case 2. Uniform ProcessinE times on machines A and B.

The optimal solution is to choose d a such that

2ub- 1 +4 1- k +P-B d a
JO2u ubz PA 2u -t u1 [l 2u a d

+ A+2al I. Ck+PB -d a Ra
2ub-2tb2u a [

*4u aluaR a+3(2ub t b )P A
oru d Pa B 2u al- A 2/ (2u b-2t b- P A

State (3.4). A has not started on the bottleneck, and B has not

started on machine B.

Machine B <-z -><- y -

Bottleneck <-x -><- PA7-><- P
available for A

fsbk W the distribution of maxix + PA y + z?

The optimal solution is to choose da such that

1o f sb (k) F a(k + P B da) dk R Ra
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Case 1. Exponential processing times on machines A and B.

Similar to state (3,3) except X is replaced by >b + >blO

Case 2. Uniform processing times on machines A and B.

Similar to state (3,3) except with added time delay at machine B.

In general, the use of state information to determine delivery time can

be characterized as matching the expected delivery time to the

availability of the bottleneck machine in addition to allowing for

safety time dependent on the relative value of machine capacity to

holding cost.

4.4 Aggregate Planning Model with Lot Sizes and Deliveries as

Variables.

In the previous sections, delivery times were determined when the

lot sizes were known. In this section, both delivery times and lot

sizes will be considered as variables. The traditional ELSP (relaxing

scheduling constraints) is formulated as follows:

minimize (HiT i + Ai/ Ti)

subject to ( (i/ Ti + P 1

In this model, the optimal lot size is given by riT. The average

inventory cost when delivery times are random variables is

0
r T -x fi(x - di) dx

To shorten future notation, let ci(di) be the expected earliness given
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0

di, that is, Zi(di) - -x fi(x- di) dx,

and .i(di) be the expected delay given di , that is,

7 T1(d d = x xf i(x -d i) dx.

Then the combined problem, relaxing scheduling constraints can be

formulated as follows:

minimize 1 HiT i + Ai/ Ti + iri i(di)l

subject to I si/ Ti + Pi + T i(d/) Ti <  I

Assuming the constraint is binding, the Lagrangian relaxation of this

problem is

Z = Z. J i T i + Ai/ Ti + 1ri1i(di1 + + Ti(di)/ Till

where e > 0, the Lagrangian multiplier of the constraint, measures the

imputed value of machine capacity. The optimal lot sizes are

determined by solving

d Z H I. 1 [i(i
d-. 1 . [A + es. + eTi(d.)] = 0

TT T.

2I

Since d Z 2 A + es. + eTi(di)] k 0, L is convex in T..
dcTi Ti [A2 T 1 1

1 1

* A. + es. + GTi(di)

Furthermore, T. =
1 H.1

.. *
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Observe that this is similar to the traditional ELSP solution with the

expected delay being added to the setup time. The optimal delivery

times are determined by

-- hi iF(d + + 0 [1 - F (-di)] 0 0
d d1 ii i T.i i

I

d2
nirf.(-d) + L fi(-di 0 , Z is convex in d.di c d" i -i) i i I

di

4 Hence, we choose d.* such that F (-d0

Iiii

Observe that this is similar to the solution developed in previous

sections with 0 being the value of machine capacity. To check

convexity in both variables,

d2dZ = - 2 [1 - Fi(-d) ] .

d d. d T. T.
I I I

The determinant of the Hessian is

2 [A + es + 6T (di)][Ririfi(-di) +TL fi

Ii

2_ 0[1 F F(-di) 1 M

T. 2 i

which is positive if

[Ai/9 + si + i(di)] [1 + hir iTi/9] > 1/2 [I- Fi(-d d] / fi(-di)

.4.

o.

4 ,.. . ':. Lf. ' ." " "" . .' .,.-. -'.' ' ,..' ' -,," ." " " ' ." "..." ; ,' ." .''- ." " . . ' " ' " "' • " "" " " ".""" " " '." "" . " " " " " " " " "" ' G ' " "" " ' '
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Observe that the right hand side of this inequality gets very small in

the right tails of most distributions. For example, in the normal

distribution, at the 75th percentile this expression equals 0.10, at

the 90th percentile it is 0.03, at the 95th percentile it is 0.012, and

at the 99th percentile it is 0.004 . Since we are focusing on the

bottleneck machine, we can assume that deliveries will be scheduled to

arrive close to on-time, hence we will be looking at the right tails of

the distributions.

4.5 A Dynamic Programming Model.

4.5.1 General Formulation.

The traditional ELSP is infeasible if the capacity of the machine

is exceeded, that is, when r pi > 1. In this case, it is impossible

to satisfy the total demand. Suppose, however, that demand is dynamic

rather than constant and that, on the average, demand can be met.

Consider the following model where superscript notation is used to

denote specific periods.

Let bJ be the backlog, or excess capacity required, at the end of

period j -- normalized by machine capacity, that is, (hours of

backlog)/(hours in period). We assume that backlog from a given period

uses capacity from the next period. Then we get the transition equation

bj+- b . [pj+l + s./ Ti+ + T.(d!+) - 1

or bj+l b + . [p+ + si/ Ti + T-(dj)/ T I.
1R
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Let k be the unit cost of exceeding machine capacity. The penalty

cost due to backlog (charged at the end of each period) is

P(bj) kb j  , for bi > 0,

0 ,for b 0.

-* The average cost for period j is

C3 : [1/2 h-(, - ,)TJ + .,- r.(d4) + K T4]

Let GJ(b j 1- bi) =min Cj

subject to . [P + si/ T4 + -Ti(d )/ T ] g I - bJ-+ b3

where bj - 1 - bi is the relative capacity in period j used to diminish

the backlog. Then we can formulate the problem as a dynamic

programming problem.

Let Wj (bi- ') be the optimal cost of going to the end of the

planning horizon, given that we start period j with backlog bj- 1. For

the last period, assume bn = 0, that is, we have no backlog at the end

of the planning horizon. Then for the last period, we have

Wn(bn-1) = n(b n - 1 )

=mrin C n

subject to Z [pn +si/ Tn T i(d )/ T b n-1

The solution to this is given by

Tn.  = Ki + e [si+ 7i(dn)]

• 1/2 hir n (1 - pn)

4.o
55

,* S.. - .-,a'. . , ,.- : .."- " -. S , ' * -- ".--, "*.., *...*.- ;-, --:,*. "'';' . : .
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*

and Fi(-dn ) = e1+ rn

where 0 is chosen such that the constraint is satisfied. Observe that

larger values of bn- 1 make the constraint tighter, hence the imputed

value of machine time e becomes higher. This causes longer cycle times

and earlier deliveries and thus increases Cn. For the next to last

period, we get

Wn-l(bn- 2 ) = Mi JP(bn-1) + Gn-i(bn-2- bn-1) + Wn(bn-1),

bn-l

n-i n bnWe only need to consider b 1 - E pi since we assume b 0. In

general, the following recursion exists:

WJ(bJ-1) = minjP(bj) + GJ(b j- '- bj) + Wj+'(bJ).

bj

We assume that the boundary conditions are bn = 0 and b0 = 0.

4.5.2 A Special Case.

Consider the following special case of the general problem

developed in the previous section.

Let Ii = 0 for all i, that is, ignore the delivery problem,

and let K. = 0 for all i, that is, setup costs equal zero.

Then for the solution to GJ(b j-l- bj) we get
s

a.,
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where e is chosen to make the constraint binding. By substitution we

get

SX-si [1 - " - bi - + bJ ]

and T4 s 1 1

-i [1 -.pi bJ-' + bJ]

Let B3 = bj-1 - bi . Then we can write Gj as

GJ(B 3 ) J [) s fYJ
[1 - X p _ Bi]

GJ(Bi) is a strictly increasing function of Bi up to Bi = 1 - Pand

dG/ d Bi = GJ(B J) / [I - B.]

Since Bj is restricted to be less than 1- ,to minimize G

choose Bi as small as possible, or for any given bi-', choose bj as

large as possible. Looking at the overall problem for the last period,

we have

)

W~(bn-1) = Gi(b n-i) [FT7 x5  f
[I - Pn bn-1i

For the next to last period, we get

Tn-I(b n-2 =mrin IP(b n- 1) + Gn-l(bn-2  b n-1 ) + Wn(bn-1 )I

b n-1
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*a

Assuming bn - 1  ; 0, we want to minimize

C .J H n- 1 ] i J H n-1
M n-(b n - ) = k b n -  + i i ] .

[I Pn-I b n-2 + bn-1

n-i n-1

Observe that if bn - 1 < 0, the term k bn - 1 drops out.

Mn-I r. H n - 1 ][". si J H n - I
dd- 1  = k - -i.i

n-1 kn- bn-Z bn-1Z
d bnP i  b +b

+ O. Hi C s-i Hi
[I - Pi - bn-1] f

d2 Mn- 1  2[ HiW] 2 si n- 1

n12  [1 pn-1 _bn-2 +bn-] 3

2[ x [ X] s,
b [1 - b nI] 3  0.

Cn- I n n-1- ]

Hence Mn-i is convex in bn-  and a minimum with respect to bn-1 can be

found. Observe that if bn- I  0 , the term k drops out of the first

derivative and the second derivative remains the same, hence convexity

is preserved.

k *l- AZ
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Conditions for backloeeine.

Using the above results, we can then define the condition for

backlogging as

H n- [£ i JHn- 1

n-I bn- 2  2 [1 n 2[1 - pi b [I-XPi

For example, if the penalty for backlogging k were very small, then it

might be advantageous to backlog capacity from one period to the next. -

The condition for negative backlogging, that is, getting ahead of

demand, is

n- i n- [ TO s i HnT

n-i bn-2 1 2 [n 2
i i

This can be defined roughly as the ratio of scaled holding costs to

slack machine capacity. If this ratio is smaller for one period than

for the subsequent period, then it is advantageous to get ahead. The

conditions where no backlogging is optimal can be defined as anything

in between the two ranges described above. Suppose the optimal decision

in period n-1 is bn- . Then for period n-2, we have

,n- 2 (bn- 3) = mi JP(bn- 2) + Gn- 2(bn- 3 -bn- 2) + !n-l(bn- 2)

bn-2

Sk bn 2 + (I - Pn,-2 b bn-3 + b n-2j

1" 1

,- .- - , OO o - " -. , ' . ,-. ,,. o, ,- - -.- [i-.-, ,- -X P•.-. .- - ,-. -b n- --3 -+-b n- 2 ])°* b,' "
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i Hn [1si J Hn- + F. [Tosi TT
+ -EPn- 1 _bn- 2 +n n-1] + Pn b- 1 ]

[-EPi + I- i-

plus an additional term k bni, if b > 0. Observe that we can

define ranges for backlogging similar to that in period n-1.

4.6 Assembly Model

4.6.1 Introduction

The traditional ELSP assumes constant, continuous demand. An

extension to this is suggested by the OPT problem (5) in which several

parts are processed through a machine system and assembled. In this

case, inventory holding costs for WIP are charged until the finished

parts are assembled. There are three issues that must be addressed in

-. this assembly model:

lot sizing (and scheduling),

sequencing,

and inventory pattern.

The inventory pattern issue will be discussed in the following two

sections, with subsequent comments on lot sizing and sequencing.

4.6.2 Two Product Case

In the two product case (see Figure 4 - 6), we get an inventory

pattern as illustrated in Figure 4 - 7.

.

**% '(
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A B

Bottleneck
Machine

Assembly

FIGURE 4- 6

Machine Network

Product A
Inventory o a a I a

PbpbT

ProductB 'Sb B %PbT
Invent ory Sbbpb T  T

FIGURE 4 - 7

Two Product Inventory Pattern

In this inventory pattern, a i is the fraction of the production time of

i during which inventory is accumulated. During the other portion

(1 - ai.) of the production time all parts produced are used for

assembly.

Note that Pb(l -cb)PbT = p aaapT and pa 0 - xa)pa T  PbrbPbT

The cycle length is defined by

T = paT + PbT  + Sa + Sb

= (S a + Sb)/ (1 -Pa '

where S. s. + Ti(d.) , for i a and b.

1 1. 1i1
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Then we can formulate an expression for the average inventory, St, of

each part as follows:

A A = (Pa p T /2)(aeP T /T) +(p aa p T)(S b/T

+ (p a or aT /2)[(1 - m a)P T / T

=(a / b) "a~a 2 I[aP aT (Pa+ Pb + 2 PbSb]

SB= (PbocPb T / 2) (%pbT / T) + (Pb%pb T) (Sa / T)

+ (PbOb bT / 2)[(1 - Ora)pa T / T]

(a / b)(1 -OC)P/2 1 (1 - O)paT (pa b+2Pb '

The total average cost to minimize is

C H apa 'Pb) 0a~a / 2 [orapaT (Pa+ Pb + 2 PbSb]

+K /T +~p IT)( +r)p + ( apT(a b

+Ka T+K b riT+Aa sa (d) a rAb Cb(d b)

subject to

0 ~
a

7 (d )+ s S
a a a a

Tb(d b + s b S bh

First we find the minimum with respect to Sa and S b

d C/dS a= H pa(1 tai _

d C/dS b= Hpaop >0

Hence always choose S a and S b as small as possible, that is,

*Sa a a(d a + 3a , and similarly for B.
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This gives T = [Ta(d) + sa + Tb(db) + S / [ P - Pb]

Now that we know how to choose Sa and Sb$ we can find the minimum

with respect to c
a

d C / d oa = Ha(Pa / Pb) Pa / 2 ["aPaT (Pa+ Pb) + 2 PbSb]

+ Ha(P a / pb) oaPa / 2 [paT (pa + pb)]

- Hb(Pa / Pb ) Pa / 2 [(1 - ma)PaT (pa+ pb ) + 2 PbSa]

- Hb(Pa/ pb)(1 - ma)Pa / 2 pa T (pa + pb )

= Papa / Pb JHa[o aPaT (Pa+ Pb) + PbSb]

- Hb[(1 - oa)PaT (Pa+ Pb ) + PbSa]l

d2C / d ora2 =papa/pb (Ha+ Hb)(Pa+ Pb ) paT > 0

Hence C is convex in ca. The optimal value of oa isa a

Hb Pb Hb Sa Ha Sb
= H+H + I i+HpT H+ Hba b Pa+ Pb a b a a b Pa T

Suppose that Ha = Hb and Sa = Sa. Then a = 1/2. This gives us a

general solution to the two product case. However, an important

question is when does one product dominate the problem so that we never

carry any inventory of that product?

Conditions for dominant product.

Under what conditions should we never accumulate finished inventory of
AA, that is, a 0? These conditions can be summarized as

4 -% % l
4

. ;. -*]~~:~-*,*
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Ha Pa+ Pb + Sa/ T Pa+ Pb

b S b 1 - b

This condition holds when the holding cost of A is much larger than the

holding cost of B. The last inequality is strict unless S. = 0. For

example, if the machine utilization, pa + Pb' equals 0.8, then Ha/Hb

must be at least 4. To find the minimum with respect to d a'

d C / d da = HbPa(1 - a)Pa [1 - F a(-da)] - rF aFa(-d) = 0.

d2 C/dda a(1 - ca)Oafa(-da) + r afada) ( 0

Hence C is convex in d . Choose d such that
a a

F (-da) HaPa(i - Xa)Pa

HaPa(I - oa)pa + r ha

To check convexity in d and o aa a

d2 C / d d da a -HbPaPa[I - Fa(-da)]

The determinant of the Hessian is positive if

Papa / Pb (Ha+ H ab)(P+ Pb) PaT [HbPa(1 - a)Pafa (-d a) + r afa (-d a)]

Hb 2Pa2 Pa2[1 - Fa(-da)]

or

H+Hb Pa+ Pb rP T [1 -Fa(-da)]2

Hb__ -b PaTH(1- c) + a > f(_da)
a a HbPaP a

Observe that the right hand side of ,is inequality is the same as that

developed in Section 4.4, and convexity again holds for reasonable

problems.

-
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4.6.3 Three Product Case.

Consider three products produced on a rotation cycle (see

Figure 4-8).

aaa pT

Product A
Inventory 0 ot p T a-

Pb Ob AT-

Product B T
Inventory 0 b b T

Product C 15
Inventory 0 1 T 1 PTI T

C

FIGURE 4 - 8

Three Product Inventory Pattern

The average inventory of each part is

RA (PaaaT 2) (aapaT/T) + (p a a aT) (Sb!/ T)

+ [P a xaT /2+ pC(I a c)P T 2] [(1 ob)Pb T/T]

+ [PC (0 - )PcT] [(x AT + Sc / T]

+ [PC (1 - O C)p T /2] [(1 - v C)p T / T]
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B [pb(1 -a)p T /a2]a[1 - a )p T /aT]a + (pb%pbT) (S C / T)

+ I(P cc PbTb/ b Z) + p (a o a /a

* [(1 - M C),PcT / T]pa(1 - M a)PaT] [(ccpT + Sc) / T]

Rc= [(pcCcT / 2) + pb( . -%)PbT / 2] [(1 - ra)paT / T]

+ [Pb(l - %)PbT /2] [(bpbT + Sb) / T]

+ [pb( - )PbT / 2] [(i - ab)PbT / T]

+ (p CcPCT / 2) (xCPCT / T) .

The following is the total inventory cost:

C = HaAa + Hb b + Hc .

C is convex in . and the determinant of the Hessian with respect to .11

and o. is positive, hence we have convexity in two variables.

a + Pb 1 -HaSb + 2HbSc - HcSb
a a - '-H + H + H

a+ Pb a a b c

Hb Pa Pb
+Ha + Hb +11c H + p(Pa+ pb

Suppose Pa= Pb =Pc ' Sa= Sb= S, and Ha= Hb= H . Then or = 2/3

4.7.4 Sequencing Then One Product is Dominant.

Suppose one product, call it product A, is dominant so that no

inventory of that product is ever accumulated. How should the remaining

products be sequenced? Consider a three product case with inventory

pattern shown in figure 4-9.

.*.* .. ~~ * ** .. * -** 4-.~ ***S~S ~ ~ ~**'*** .'I...... ~ 1L
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Product A I
Inventory 0 Sa PaT

Product B I b b"T
Inventory 0 Spb T  T

Product C T

Inventory Sc pcT T

FIGURE 4- 9

Three Product Inventory Pattern

The average inventory for B is

2b =  (rT / 2) (pbT / T) + r (Sa /T) + (rT /2) (paT / T)

The average inventory for C is

c = (rT / 2) (pcT / T) + r (Sa aT) + (rT/2) (paT/T)

+ r [(Sb + pbT) / T].

Observe that the only term in these expressions that is dependent on

the sequence of B and C is r [(Sb + pbT) / T]. Then using the

sequence dependent costs, B should follow C if

SHcr US b + pbT) / T] < Hbr [(S c + PcT) /T]

or 1/Hb (Sb + pbT) 1 I/Hc (Sc + cT )

This is similar to classic scheduling theory's weighted shortest

processing time rule except that here we use weighted longest

processing time with the weights being the inverse of holding costs.



CHAPTER 5

AGGREGATE PLANNING ALGORITHM

5.1 Algorithm Development

5.1.1 Background

Section 4.4 presented a model which combined the issues of

deliveries to a bottleneck machine and lot sizing. The optimal order

intervals and requested delivery times were as follows:

Ai+e(s i+Ti (d)

i H

and

Fi(-d.) = , (1)

where E, the imputed value of machine capacity, is chosen such that the

machine capacity constraint is satisfied at equality, that is,

EjSi/Ti + Pi + 'i(di)/Til = I

or

EIS i + 7i(di)j/T i = I - Zpi" (2)

If the setup cost is zero, that is, the value of setup consists only of

the value of lost machine capacity,

-73-
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Si+Tidi(

1 He (3)

Substituting this into the capacity constraint (2), we have

S S+7~ (d.) 1-
¢1 Si+ idi) I -zPi

+ Hi

or

E H i+7i (4)

5.1.2 Aleorithm

" This leads to the following algorithm which iterates on the

unknown imputed value of machine capacity:

Step 1. Let 7i(di) = 0 for all i.

Step 2. Compute e using (4).

'* e =l _ i

-SEp

.4 Step 3. Compute T. for all i using (3).

€1

9.H.
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Step 4. Compute di for all i using (1).

F.(-d.) = (

The inverse of F(.) depends on the form of the distribution

distribution of delivery times.

Step 5. Compute Ti.(di) for all i. T (.) depends on the form of

the distribution of delivery times.

Step 6. Go to step 2 until e converges. Convergence is assured by

the convexity verified in chapter 4.

5.1.3 Normal Distribution Assumption

If we assume that the delivery times to the bottleneck machine are

normally distributed, for step 5 of the algorithm we get

T i(di) = ai f(-d i/ai) + di F(di /ai)

where f(.) is the standard normal density function and F(.) is the

standard normal cumulative distribution function. This algorithm is

coded in PASCAL in Appendix 1.

d4
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5.2 Results

Two key questions to ask using this model are:

When can we ignore the delivery issue in scheduling a machine and

what affect do the parameters of this model have on the overall

system? These questions can be answered by looking at the results of

various data input to the model.

5.2.1 Holding Costs for Raw Parts

We can assume that the ratio of holding costs for raw parts to the

holding costs for processed parts is between 0 and 1, that is, the

value of the raw parts lies somewhere between zero and the value of the

processed parts. We can compare the resulting lot sizes determined from

the aggregate model with the corresponding lot sizes determined

ignoring the delivery issue. The ratio of these lot sizes, call it the

A-ratio, is one when the value of raw parts is zero, hence we can

ignore the delivery issue in scheduling a machine when the relative

value of raw parts is small. In this case, we can carry sufficient

inventory of raw parts to keep the bottleneck machine fully utilized

because the raw parts inventory is very cheap. However, Figure 5-1

shows that as the relative value of raw parts increases, the

corresponding lot sizes in the aggregate model also increase. Hence, as

the relative value of raw parts increases, it becomes more important to

consider the delivery issue when scheduling a machine.

PA'
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#6

TABLE 5- 1

Data Used in Figure 5- 1

Part Pi si Ci h.

1 0.25 3 60 4

2 0.33 2 40 2

3 0.33 1 20 3

1.4

1.3

A-ratio 1.2--

1.1

1.0 R/h
0.0 0.2 0.4 0.6 0.8 1

FIGURE 5- 1

Graph

5.2.2 Variance of Delivery Times

If the variance of delivery times is small, we can ignore the

delivery issue when scheduling a machine. To quantify how small the

variance should be, we can compare the standard deviation of delivery

time to the setup times. As shown in Figure 5-2, if the standard

deviation of delivery time is small relative to the setup times, we can
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ignore the delivery issue. We also notice from Figure 5-3 that the

total system costs go up at an almost linear rate with respect to the

standard deviation of delivery time. Hence the variance of the input

process plays a critical role in both lot sizes and overall costs.

TABLE 5 - 2

Data Used in Figures 5 - 2 and 5 - 3

Part Pi s. h. h.1 1 11

1 0.200 3 5 4.0

2 0.250 2 1 0.8

3 0.125 1 2 1.6

4 0.250 3 3 2.4

5 0.111 2 4 3.2

1.10 -

1.08 -

SA-ratio 1.06 -

1.04 -

1.02 -

~1.00Iii a/s

0 2 4 6 8 10

FIGURE 5 - 2

Graph
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4800

4600 -

Cost 4400 -

4200

~"4000 -,

3800 a/s
0 2 4 6 8 10

FIGURE 5 - 3

Graph

Reducinf Setup Times

Much of the literature purporting the advantages of the Japanese

philosophy of scheduling, just-in-time, support reducing setup times on

machines as a means to decrease lot sizes. However, if we look at

reducing setup times in the aggregate model, we find that the variance

of the input process plays a critical role in determining how much the

lot sizes can be reduced. As shown in Figure 5-4, reducing setup times

produces a corresponding reduction in lot sizes until the setup time

gets small compared to the variance of the input process. In Figure 5-

5, we see that the ratio of lot sizes determined from the aggregate

a.
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model compared to the corresponding lot sizes determined ignoring the

delivery issue increases almost exponentially as the setup times

approach zero. Hence, in trying to achieve just-in-time via small lot

sizes, the variance of the input process must be reduced as well as

reducing the setup time on the machine.

TABLE 5 - 3

Data Used in Figures 5-4 and 5-5

Part Pi si ai hi

1 0.25 3 60 4

2 0.33 2 40 2

3 0.33 1 20 3

80

60

Lot
Size 40

20

I I I I I
0 2 4 6 8 10

FIGURE 5- 4

Graph
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m

25-

20-

J-ratio 15-

10

5

0- I | I | S

0 2 4 6 8 10

FIGURE 5 - 5

Graph

% %



CHAPTER 6

CONCLUSIONS

If we put the lot scheduling problem in the context of the

hierarchy of decision models and look both at the physical setting and

the nature of the problem, we can get better solutions to a given

problem in a more realistic setting. Due to the inherent difficulty in

solving scheduling problems, the best we can usually hope for is

heuristics which provide good solutions over a reasonable range of

problems. However, if we encounter a problem with a dominant product,

we can make use of that fact to simplify the search for a solution.

The concept of a dominant product can be used to determine when

to insert idle time into a schedule. In this case, a dominant product

is one with dominant holding costs. If in a given problem we have a

dominant product and the remaining products have low machine

utilization, that is, we have slack machine time available, then we

can produce a better schedule by inserting idle time for the dominant

product.

The role of the dominant product also tells us when not to use

the zero switch rule (ZSR). We can conclude that the zero switch rule

(ZSR) is a good scheduling policy for most problems. The exception to

this happens when the ZSR solution yields lumpy production patterns

for a dominant product. In this situation, we can sometimes improve

-82-
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upon the ZSR solution by making the dominant product's production

pattern more even while using a non-zero switch on another product.

In looking at the context of a machine being scheduled, if there

is variability in the input process to the machine, we can achieve

lower overall system costs by considering the issues of determining

delivery times and lot sizes concurrently instead of looking at each

independently. We can use this approach both in aggregate planning and

in real-time detailed scheduling. When determining the optimal

delivery times, we balance the cost of holding raw parts with the

value of lost machine capacity in a manner similar to the Newsboy

Problem. This approach can be extended to consider problems with non-

constant demand when we allow backlogging of demand and machine

capacity. However, we find that much of the time, we will still try to

satisfy current period demand with current period production.

The results of the aggregate model combining the issues of

delivery and lot sizes show that the conditions when we should

consider the delivery issue in conjunction with the lot size issue are

when the holding cost of raw parts is high with respect to the holding

cost of processed parts and when the variance of delivery times is

high with respect to the corresponding setup times. We find that the

overall system costs increase at an almost linear rate with respect to

the standard deviation of delivery times.

In summary, we find that by placing a given problem in its proper

context, we can more effectively derive solutions to the real problem

at hand.
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APPENDIX 1

AGGREGATE PLANNING ALGORITHM

PROGRAM sp (INPUT,OUTPUT,mdata); j** TABLE OF CONTENTS

1 Declarations
2 Readin -- reads input data
3 Setup - sets up in proper format
4 Norminv finds inverse of normal CDF
5 Normden -- calculates density of std normal rv
6 CO -- computes value of the normal CDF
7 Thetacalc -- ca)hulates value of machine time
8 Results -- summarizes part schedules

. 9 Display -- writes results
10 CONTROLLING PROGRAM

CONST p = 3; Inumber of partsi
n = 4; Inumber of iterationsi
lead = 5; Ilead time for deliveryj

TYPE index = integer;
parray = array [1..p] of real;

VAR mdata: text; )input file
r : parray; Idemand ratei
su : parray; Isetup timel
pr : parray; 1production ratei
ru : parray; Irelative utilization - r/pri
h : parray; Iholding cost after processingi
hb : parray; 1holding cost before processingi
sd : parray; Istandard deviation of delivery timer
t : parray; Icycle length - time between production runst
fcum : real; Ifraction of deliveries on timej
comp : real; 11 - fcumj
ninv : real; Inormal inverse of comp
fden : real; Idensity of delivery dist'nj
d : parray; Ischeduled delivery, neg = early, pos = late
tau : parray; lexpected delivery delay

4 mtau parray; lexpected early deliveryj
suml : real; Isum of sqrt(h) (su + tau) j
sum2 real; Isum of su + tau
s1 real; Islack = 1 - sum of ru
theta: real; Ivalue of machine time = suml**2/(sum2*l**2)1
cost : real; 1cost of qolution at last iterationj
i,j : index;

-84-
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PROCEDURE readin; Iread in datal
var i: index;
begin Ireadinj

reset(mdata);
for i 1= to p do begin

read(rndatar[i]);
read(mdata.su[iJ);
read(mdata,pr[i]);
read(mdata,sd[i]);
read(mdata~h~iJ);
read(mdata,hb[i]);
end;

close(mdata);
end; Ireadinj

PROCEDURE setup; Isetup data in proper format I
var i: index;
begin jsetupI

si : 1.0;
for i i=1to p do begin

ru[iJ : r[i] / pr[i];
s1i: sl - ru[i];
tauli] :=0; lintitializes tau to zerol
end;

writeln(' slack capacity = 1s)
end; jsetupj

PROCEDURE norminv;lcomputes the appoximate inverse of the normal CDFj
Ireference: HANDBOOK OF MATHEMATICAL FUNCTIONS by j
lAbramowitz and Stegun, error < .00045
Igiven comp, where 0 < comp < .5 , finds
I complementary cumulative inverse ninv,
1where 1 - F(x) -comp

var t1,t2,nidl,x: real;
begin jnorminvI

ti := 1.0;
if comp > 0.5 then begin

ti : -1.0;
comp := 1.0 - comp;
end;

t2 sqrt(2*ln(l.0/comp));
n1 2.515517 + 0.802853*t2 + O.010328*t2wt2;
dl 1.0 + i.432788*t2 + 0.189269*t2*t2 + 0.001308*t2*t2*t2;
x t2 - ni/di;
ninv := tl*x;

end; inorminvi
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PROCEDURE normden; Icalculates density of std normal rv
var n2: real;
begin Inormdenj

n2 := -(ninv*ninv)/2.0;
fden := 0.3989423 * exp(n2);

end; Inormdent

PROCEDURE cum; 1computes the appoximate value of the normal CDF j
Ireference: HANDBOOK OF MATHEMATICAL FUNCTIONS byj
jAbramowitz and Stegun, error < .00001
Igiven ninv, finds value of the normal CDF, fcum,

var tl,t2: real;
begin Jcum

if ninv > 0.0 then begin
tl 1.0 / (1.0 + 0.33267*ninv);
t2 :0.4361836*tl - 0.1201676*tl*tl + 0.937298*tl*tl*tl;
fcum :=1 - fden*t2;
end

else begin
tl 1.0 / (1.0 - 0.33267*ninv);
t2 := 0.4361836*tl - 0.1201676*tl*tl + 0.937298*tl*tl*tl;
fcum := fden*t2;
end;

end; cum|

PROCEDURE thetacalc; Icalculates value of macine capacityj
var i: index;
begin Jthetacalcj

suml 0.0;
sum2 0.0;
for i := 1 to p do begin

suml := suml + sqrt(h[i]) * (su[i] + tau[i]);
sum2 sum2 + su[i] + tau[i];
end;

theta := suml*suml / (81*sl);
end; Ithetacalct

PROCEDURE results; Isummarize resultsi
var i: index;

cut: real; Itruncated left taill
begin

cost := 0.0;
for i := I to p do begin

if lead + d[ij - 3*sd[i] < 0.0 then begin
ninv := -lead / sd[i]; Itruncates delivery to lead time|
normden; 1computes density of normal rvj
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cum; 1computes cumulative dist'n of ninvi
cut :=sd[iJ * fden + lead * fcum; lexpected earlyl
mtau[i] :=mtau[i] - cut;
end;

cost :=cost + h[i]*t[iJ + hb[iJ~r[iJ*mtau[iJ;
end;

end;

PROCEDURE display; 1write resultsi
var i: index;
begin Idisplayl

writeln('INPUT DATA');
vriteln(' r/p s sd h hb');
for i 1= to p do begin

writeln(ru[i] ,su[iJ ,sd~iJ ,h[iJ ,hb[iJ);
end;

writeln( 'RESULTS');
writeln('Part No Order Int Delivery Time Expected Delay');
for i :=1 to p do begin

writeln(i,tli] ,d[i],tauti]);
end;

writeln(' COST OF SOLUTION = ',cost);
end; Idisplayl

begin Ispi
writeln('Start program');
readin; Iread in datal 46
setup; Isetup data in proper formatj
write ln;
for i := 1 to n do begin

thetacalc; Icalculate value of machine timej
writeln('Iteration',i,' theta = ',theta);
for j := 1 to p do begin
t[jJ :=sqrt(theta *(su[j]+tau[jJ)/h[j]); 1production intervali

fcum :=theta /(theta+r[j)*hb[j]*t[j]); Ideliveries on timej
comp := 1.0 -fcum; lcomplementary cumulative of fcumj
norminv; Icomputes functional inverse of fcumj
d[j] -ninv *sd[j]; Ischeduled deliveryj
normden; 1computes density of normal rvj
tau[j] sd[j] *fden + d[j] *(1 - fcum); )expected delayl
mtau[j] sdljj fden - d[j) fcum; lexpected earlyl
end;

end;
results; Isummarize resultsi
display; 1write reslultsi

end. ISM~



APPENDIX 2
THE BAKER AND BOMBERGER PROBLEMS

The Bomberger problem (3) is defined by the following parameters:

i s Ai hi pi Pi Ti

1 .125 15 .00065 30000 400 167.5
2 .125 20 .01775" 8000 400 37.7
3 .25 30 .01275 9500 800 39.3
4 .125 10 .01 7500 1600 19.5
5 .5 110 .2785 2000 80 49.7
6 .25 50 .02675 6000 80 106.6
7 1.0 310 .15 2400 24 204.3
8 .5 130 .59 1300 340 20.5
9 .75 200 .09 2000 340 61.4

10 .125 5 .004 15000 400 39.3

T " 1/2
T = [Ai/Hi]

"'Originally .01175, however all subsequent authors have used .01775.

For this problem, we get the following results:

Pi = 0.88

si/T i = 0.07

si/Ti + x Pi = 0.95 (reference constraint (2-2)
in Chapter 2).

Hence, only 95% of the machine capacity is utilized in the theoretical

optimum solution.
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The Baker problem (1) is defined by the following parameters:
*

i si Ai hi Pi Pi Hi Ti

1 .08 75 .01 2500 .08 .92 9.03
2 .04 30 .10 1000 .25 9.38 1.79
3 .02 25 .04 500 .20 1.60 3.95
4 .12 35 .08 200 .35 1.82 4.39

T * = /Hi] 1/ 2

For this problem, we get the following results:

Pi = 0.88

*

si/T. = 0.06

si/Ti + Z pi = 0.94 < 1 (reference constraint (2-2)
in Chapter 2).

Hence, only 94% of the machine capacity is utilized in the theoretical

optimum solution.

a''' '': .'. ''?. :'- . . . .. .



BIBLIOGRAPHY

1. BAKER, K.R., "On Madigan's Approach to the Deterministic Multi-
Product Production and Inventory Problem," Management Science,
Vol 16, No. 9 (1970). pp. 636-638.

2. BITRAN, G.B., HAAS, E.A., HAX, A.C., "Hierarhical Production
Planning: A Single Stage System," Operaions Research, Vol. 29,
No. 4 (1981), pp. 717-743.

3. BOMBERGER, E., "A Dynamic Programming Approach to a Lot Size
Scheduling Problem," Management Science. Vol. 12, No. 11 (1966),
pp. 778-784.

4. CONWAY, R.W., MAXWELL, W.L., and MILLER, L.W., Theory of
SchedulinE, Addison-Wesley, Reading, Mass. (1967).

5. CREATIVE OUTPUT, "The OPT Quiz: A Challenge in Scheduling,"
advertisement in Industrial Engineering, Vol. 17, No. 3 (1985),
pp. 38-39.

6. DELPORTE, C.M., "Lot Size and Sequence Decisions for N Products
on One Facility with Deterministic Demand," unpublished Ph.D.
Dissertation, Cornell University (1976).

7. DELPORTE, C.M. and THOMAS, L.J., "Lot Sizing and Sequencing for
N Products on One Facility," Management Science, Vol. 23 (1977),
pp. 1070-1079.

8. DEMPSTER, M.A.H., FISHER, M.L., JANSEN, L., LAGEWEG, J., LENSTRA,
K., RINNOOY KAN, A.H.G., "Analytial Evaluation of Hierarhical
Planning Systems," Operaions Research, Vol. 29, No. 4 (1981),
pp. 707-716.

9. DOBSON, G., "The Economic Lot Sizing Problem: A Resolution of
Feasibility," Working Paper Series No. QM8504, The Graduate
School of Management, University of Rochestor, February 1985.

10. DOLL, C.L. and WHYBARK, D.C., "An Iterative Produced for the
Single-Machine Multi-Product Lot Scheduling Problem," Management
Science, Vol. 20, No. 1 (1973), pp. 50-55.

11. ELMAGHRABY, S.E., "The Economic Lot Scheduling Problem (ELSP)
Review and Extensions," Manafement Science, Vol. 24 (1978),
pp. 587-598.

-90-

-00- "W



-91-

12. FUJITA, S., "The Application of Marginal Analysis to the Economic
Lot Scheduling Problem," AIIE Transactions, Vol. 10, No. 4,
pp. 354-361.

13. GOYAL, S.K., "Scheduling a Multi-Product Single-Machine System,"
Operaional Research Quarterly, Vol. 24, No. 2 (1973), pp.261-266.

14. GOYAL, S.K., "Scheduling a Multi-Product Single Machine System--
A New Approach," Int. J. Prod. Res., Vol. 13, No. 5 (1975),
pp. 487-493.

15. GRAVES, S.C., "Using Lagrangian Techniques to Solve Hierarchical
Production Planning Problems," Management Science, Vol. 28
(1982), pp. 260-275.

16. GUNTHER, H.O., "The Design of an Heirarchical Model for Pro-
duction Planning and Scheduling," in Lecture Notes in Economics
and Mathematical Systems, Vol. 266, Multi-Stake Production
Planning and Inventory Control, S. Axsater, Ch. Schneeweiss, and
E. Silver, editors, (Springer-Verlag, 1986), pp. 227-260.

17. HAL A.C., and GOLOVIN, J.J., "Hierarchical Production Planning
Systems," in Studies in Operations Management, A.C. Hax, editor,
(Elsevier, Amsterdam, 1978), pp. 400-428.

18. HAL, A.C., and MEAL, H.C., "Hierarchical Integration of Pro-
duction Planning and Scheduling," in TIMS Studies in Management
Science, Vol 1, Loisics, M.A. Geisler, editor, (Elsevier,
Amsterdam, 1975), pp. 53-69.

19. HAESSLER, R.W., "An Improved Extended Basic Period Procedure for
Solving The Economic Lot Scheduling Problem, AIIE Ttansactions,
Vol. 11 (1979), pp. 336-340.

20. HSU, W., "On the General Feasibility Test of Scheduling Lot
Sizes for Several Products on One Machine," Manarement Science,
Vol. 29 (1983), pp. 93-105.

21. KARMARKAR, U.S., "Lot Sizes, Manufacturing Lead Times and
Utilization," Working Paper, The Graduate School of Management,
University of Rochestor, May 1983.

22. KARMARKAR, U.S., "Lot Sizing and Sequencing Delays," Working
Paper, The Graduate School of Management, University of
Rochestor, June 1983.

. . .. I' ' ' " ". . ' ' ' " " - - :,'



-92-

23. MADIGAN, J.G., "Scheduling a Multi-Product Single Machine for an
Infinite Planning Period," Management Science, Vol. 14 (1968),
pp. 713-719.

24. MAXWELL, W.L., "An Investigation of Multi-Product Single Machine
Scheduling and Inventory Problems," Unpublished Doctoral Thesis,
Cornell University, 1961.

25. MAXWELL, W.L., "The Scheduling Of Economic Lot Sizes," Naval
Research LoEistics Quarterly, Vol. 11, No. 2-3 (1964),
pp. 89-124.

26. MAXWELL, W.L., and MUCKSTADT, J.A., "Establishing Consistent and
Realistic Reorder Intervals in Production-Distribution Systems,"
Operaions Research, Vol. 33, No. 6 (1985), pp. 1316-1341.

27. MAXWELL, W.L., MUCKSTADT, J.A., THOMAS, L.J., and VANDEREECKEN, J.,
"A Modeling Framework for Planning and Control of Production in
Discrete Parts Manufacturing and Assembly Systems," Interfaces,
Vol. 13, No. 6 (1983), pp. 92-104.

28. MAXWELL, W.L., and SINGH, H., "The Effect of Restricting Cycle
Times in the Economic Lot Scheduling Problem," AIIE Transactions,
Vol. 15, No. 3 (1983), pp.

29. ROUNDY, R., "Rounding Off to Powers of Two in the Economic Lot
Scheduling Problem," Technical Report No. 663, School of Oper.
Res. and Ind. Eng., Cornell University, July 1985.

Ii

e%



... a7 P -- - -

~mmuwku N

44

for,_


